946 research outputs found

    The Embryonic Protein Nodal Supports Metastatic Phenotypes in Breast Cancer

    Get PDF
    Metastasis is the process by which tumour cells disseminate to distant organ sites. Aberrant expression of stem cell-associated proteins within tumours is associated with metastasis and poor patient prognosis. One example of a stem cell factor that is associated with cancer progression is Nodal, a member of the TGF-β superfamily. Nodal is normally limited to pluripotent stem cells during embryonic development, and to specialized dynamic adult tissue (such as the cycling endometrium), but is aberrantly re-expressed in multiple cancer types, including melanoma, glioma, prostate cancer, and pancreatic cancer. The central objective of this thesis is to determine the role of Nodal during various aspects of the metastatic cascade in breast cancer. First, I determined that Nodal inhibition in aggressive breast cancer cell lines impairs tumour growth in an orthotopic nude mouse model, concomitant with reduced proliferation and enhanced apoptosis. Furthermore, in an experimental metastasis assay in NOD/SCID/MPSVII mice, I determined that Nodal knockdown prevents the transition from lung micrometastases to macrometastes, by supporting a positive ratio of proliferation to apoptosis. Using numerous animal models, I then discovered that Nodal promotes angiogenesis, and that knocking down its expression in established tumours reduces vascularization and causes necrosis. Notably, Nodal protein was positively correlated with vascular density in human breast cancer lesions. Mechanistically, Nodal induced a pro-angiogenic profile in breast cancer cells by upregulating VEGF and PDGF. Finally, I investigated the role of Nodal in the regulation of EMT and invasion; phenotypes that are classically associated with this morphogen. Specifically, since Nodal is implicated in mammary gland remodeling and placentation, I examined its effects on cellular invasion in these contexts. Nodal overexpression in poorly metastatic breast cancer and choriocarcinoma cell lines enhanced invasion and EMT-associated changes in gene expression, and this effect was in part mediated by ERK signaling. Nodal inhibition in metastatic breast cancer cell lines reduced spontaneous metastasis to the liver (but not the lung) in NOD/SCID/IL2γR- mice. The results presented herein suggest that Nodal promotes several pro-metastatic processes. Given its restriction to embryonic or highly specialized adult contexts, targeting Nodal in breast cancer poses an exciting avenue for therapeutic intervention

    Appendicitis associated with a strangulated Littre's hernia

    Get PDF
    AbstractA 12 year-old boy presented with right lower abdominal and groin pain. Intraoperatively, he was found to have acute appendicitis associated with a strangulated Meckel's diverticulum, or Littre's hernia. Both the appendix and Meckel's diverticulum were resected laparoscopically while the inguinal hernia was repaired four months later. We present an uncommon finding of a strangulated Littre's hernia discovered concurrently with acute appendicitis. The presentation, management and review of the literature of this condition are discussed

    Attenuated Codon Optimality Contributes to Neural-Specific mRNA Decay in Drosophila.

    Get PDF
    Tissue-specific mRNA stability is important for cell fate and physiology, but the mechanisms involved are not fully understood. We found that zygotic mRNA stability in Drosophila correlates with codon content: optimal codons are enriched in stable transcripts associated with metabolic functions like translation, while non-optimal codons are enriched in unstable transcripts, including those associated with neural development. Bioinformatic analyses and reporter assays revealed that similar codons stabilize or destabilize mRNAs in the nervous system and other tissues, but the link between codon content and stability is attenuated in the nervous system. We confirmed that optimal codons are decoded by abundant tRNAs while non-optimal codons are decoded by less abundant tRNAs in embryos and in the nervous system. We conclude that codon optimality is a general determinant of zygotic mRNA stability, and attenuation of codon optimality allows trans-acting factors to exert greater influence over mRNA decay in the nervous system

    Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants

    Get PDF
    Genetic screening using random transposon insertions has been a powerful tool for uncovering biology in prokaryotes, where whole-genome saturating screens have been performed in multiple organisms. In eukaryotes, such screens have proven more problematic, in part because of the lack of a sensitive and robust system for identifying transposon insertion sites. We here describe quantitative insertion-site sequencing, or QIseq, which uses custom library preparation and Illumina sequencing technology and is able to identify insertion sites from both the 5' and 3' ends of the transposon, providing an inbuilt level of validation. The approach was developed using piggyBac mutants in the human malaria parasite Plasmodium falciparum but should be applicable to many other eukaryotic genomes. QIseq proved accurate, confirming known sites in >100 mutants, and sensitive, identifying and monitoring sites over a >10,000-fold dynamic range of sequence counts. Applying QIseq to uncloned parasites shortly after transfections revealed multiple insertions in mixed populations and suggests that >4000 independent mutants could be generated from relatively modest scales of transfection, providing a clear pathway to genome-scale screens in P. falciparum QIseq was also used to monitor the growth of pools of previously cloned mutants and reproducibly differentiated between deleterious and neutral mutations in competitive growth. Among the mutants with fitness defects was a mutant with a piggyBac insertion immediately upstream of the kelch protein K13 gene associated with artemisinin resistance, implying mutants in this gene may have competitive fitness costs. QIseq has the potential to enable the scale-up of piggyBac-mediated genetics across multiple eukaryotic systems

    Intelligent integrated maintenance for wind power generation

    Get PDF
    A novel architecture and system for the provision of Reliability Centred Maintenance (RCM) for offshore wind power generation is presented. The architecture was developed by conducting a bottom-up analysis of the data required to support RCM within this specific industry, combined with a top-down analysis of the required maintenance functionality. The architecture and system consists of three integrated modules for Intelligent Condition Monitoring, Reliability and Maintenance Modelling, and Maintenance Scheduling that provide a scalable solution for performing dynamic, efficient and cost effective preventative maintenance management within this extremely demanding renewable energy generation sector. The system demonstrates for the first time, the integration of state-of-the-art advanced mathematical techniques: Random Forests, Dynamic Bayesian Networks, and Memetic Algorithms in the development of an intelligent autonomous solution. The results from the application of the intelligent integrated system illustrated the automated detection of faults within a wind farm consisting of over 100 turbines, the modelling and updating of the turbines’ survivability and creation of a hierarchy of maintenance actions, and the optimising of the maintenance schedule with a view to maximising the availability and revenue generation of the turbines

    A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation

    Get PDF
    The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species

    The shade avoidance syndrome in Arabidopsis : the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade

    Get PDF
    Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade

    Real time magnetic resonance assessment of septal curvature accurately tracks acute hemodynamic changes in pediatric pulmonary hypertension

    Get PDF
    International audienceBACKGROUND:This study assesses the relationship between septal curvature and mean pulmonary artery pressure and indexed pulmonary vascular resistance in children with pulmonary hypertension. We hypothesized that septal curvature could be used to estimate right ventricular afterload and track acute changes in pulmonary hemodynamics.METHODS AND RESULTS:Fifty patients with a median age of 6.7 years (range, 0.45-16.5 years) underwent combined cardiac catheterization and cardiovascular magnetic resonance. The majority had idiopathic pulmonary arterial hypertension (n=30); the remaining patients had pulmonary hypertension associated with repaired congenital heart disease (n=17) or lung disease (n=3). Mean pulmonary artery pressure and pulmonary vascular resistance were acquired at baseline and during vasodilation. Septal curvature was measured using real-time cardiovascular magnetic resonance. There was a strong correlation between mean pulmonary artery pressure and SCmin at baseline and during vasodilator testing (r=-0.81 and -0.85, respectively; P<0.01). A strong linear relationship also existed between pulmonary vascular resistance and minimum septal curvature indexed to cardiac output both at baseline and during vasodilator testing (r=-0.88 and -0.87, respectively; P<0.01). Change in septal curvature metrics moderately correlated with absolute change in mean pulmonary artery pressure and pulmonary vascular resistance, respectively (r=0.58 and -0.74; P<0.01). Septal curvature metrics were able to identify vasoresponders with a sensitivity of 83% (95% confidence interval, 0.36-0.99) and a specificity of 91% (95% confidence interval, 0.77-0.97), using the Sitbon criteria. Idiopathic pulmonary arterial hypertension subgroup analysis revealed 3 responders with ΔSCmin values of 0.523, 0.551, and 0.568. If the middle value of 0.551 is taken as a cutoff, the approximate sensitivity would be 67% and the specificity would be 93%.CONCLUSIONS:Septal curvature metrics are able to estimate right ventricular afterload and track acute changes in pulmonary hemodynamics during vasodilator testing. This suggests that septal curvature could be used for continuing assessment of load in pulmonary hypertension

    Maternal Characteristics and Clinical Diagnoses Influence Obstetrical Outcomes in Indonesia

    Full text link
    This Indonesian study evaluates associations between near-miss status/death with maternal demographic, health care characteristics, and obstetrical complications, comparing results using retrospective and prospective data. The main outcome measures were obstetric conditions and socio-economic factors to predict near-miss/death. We abstracted all obstetric admissions (1,358 retrospective and 1,240 prospective) from two district hospitals in East Java, Indonesia between 4/1/2009 and 5/15/2010. Prospective data added socio-economic status, access to care and referral patterns. Reduced logistic models were constructed, and multivariate analyses used to assess association of risk variables to outcome. Using multivariate analysis, variables associated with risk of near-miss/death include postpartum hemorrhage (retrospective AOR 5.41, 95 % CI 2.64–11.08; prospective AOR 10.45, 95 % CI 5.59–19.52) and severe preeclampsia/ eclampsia (retrospective AOR 1.94, 95 % CI 1.05–3.57; prospective AOR 3.26, 95 % CI 1.79–5.94). Associations with near-miss/death were seen for antepartum hemorrhage in retrospective data (AOR 9.34, 95 % CI 4.34–20.13), and prospectively for poverty (AOR 2.17, 95 % CI 1.33–3.54) and delivering outside the hospital (AOR 2.04, 95 % CI 1.08–3.82). Postpartum hemorrhage and severe preeclampsia/ eclampsia are leading causes of near-miss/death in Indonesia. Poverty and delivery outside the hospital are significant risk factors. Prompt recognition of complications, timely referrals, standardized care protocols, prompt hospital triage, and structured provider education may reduce obstetric mortality and morbidity. Retrospective data were reliable, but prospective data provided valuable information about barriers to care and referral patterns
    corecore